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The character of the energy released by a high-current electron beam in metal tar- 
gets is studied taking into account the self-action of the beam. 

When an electron beam interacts with a metal barrier, matter is heated, melted, evapor- 
ated, and dispersed. The flow of the indicated processes is largely determined by the char- 
acter of the energy release by fast electrons, i.e., the heat source, forming in the material. 
The distribution of energy losses by weak-current electron beams is usually calculated using 
the linear single-electron approximation [i, 2], when only the interaction of fast electrons 
in the beam with atoms and electrons in the material is taken into account. As experiments 
have demonstrated [3, 4], for high-current electron beams (HCEB, I ~ i0 kA), compared with 
weak-current beams, it is observed that the penetration depth of the electrons in the target 
decreases, energy release in thin targets increases, and the heating is more intense. To 
explain these facts the high-current electron beam must be regarded as a flux of charged par- 
ticles, whose evolution is determined by the characteristic electromagnetic fields [5], i.e., 
it is necessary to take into account in addition (compared with the weak-current beam) the 
interaction of fast electrons in the beam with one another via the characteristic fields. 

This paper is devoted to the study of the effect of the characteristic magnetic field 
of HCEB on the energy released in AI, Cu, and Au targets. The basic assumptions made in for- 
mulating the problem and the methodology are analogous to those presented in [6]: 

i) since the relaxation time of a fast electron is much shorter than the characteristic 
time over which the parameters of the beam change, the kinetic equation is solved in the 
quasistationary approximation; 

2) because of the high conductivity of the plasma formed the electric field of the 
thermalized electrons is neglected; and, 
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3) assuming that there are no eddy currents (the target is represented by a collection 
of thin foils, oriented perpendicular to the beam) the magnetic field rapidly penetrates into 
the absorber, so that it has a maximum effect, as comparedwith a continuous absorber, and the 
nonstationary terms in the corresponding Maxwell's equation can be neglected. 

Thus, under the assumptions made the self-consistent problem of absorption of HCEB in 
targets reduces to the simultaneous solution of the kinetic equation for transport of rela- 
tivistic electrons in the beam and Maxwell's equations for the characteristic magnetic field 
of the beam. 

The problem was solved by the method of iterations in two stages: the trajectories were 
calculated in a fixed field and the fields were calculated based on the computed trajectories. 
The iteration process terminated when the difference between the values of the density of 
energy losses in subsequent iterations becomes less than a fixed value. 

The trajectories of the electrons in the beam were calculated by the Monte Carlo method 
using the scheme of continuous energy losses and scattering on a segment based on the Goud- 
smith--Saunderson formulas [2]. The minimum tracking energy was chosen so that the electron 
range ro(Emi n) would be less than one-half the grid step h (cell size). The effect of the 
magnetic field was taken into account by additionally varying the momentum of the particle 
at the end of the segment in accordance with the solution of the relativistic equation of mo- 
tion of an electron: 

d m - -  ( ~ )  = - e  [~B], (1) 

which under  the  a s sumpt ion  t h a t  the  v e l o c i t y  i s  c o n s t a n t  on the  segment  g i v e s  r e l a t i o n s  be -  
tween the  d i r e c t i o n  of  t h e  p a r t i c l e  a t  t he  b e g i n n i n g  ( index  0) and end ( index  1) of  t h e  s t e p :  

(?~r)l = (Y~r)0 cos b - -  (y~] sin b, 

( v ~ ) l  = (~,~)o, (2) 

(Y~), = (Y~z)o cos b + (?~) sin b, 

where B(Br, B~, Bz) = v/c is the relative velocity of an electron in a cylindrical coordinate 
system; y = (I = v2/c2)u B is the magnetic induction vector; b = (eBs/mcyB) is the effec- 
tive angle of deflection in the magnetic field for a step of size s. The value of s was 
chosen from the condition that the energy losses be small (AE = 0.01E) and the angle of de- 
flection of the electron is a step be limited (b < I rad). It was assumed that the electrons 
emerging from the target are returned by the diode field. 

It should be noted that for the axisymmetric case only the azimuthal component of the 
magnetic field B~, determined by the longitudinal component of the current density vector Jz, 
need be taken into account. For the calculations the grid was divided into cells bounded by 
the surfaces of a cylindrical coordinate system r = rj = jh, z = z i = ih, h = ro/15. The mean 
azimuthal field in a cell (ij) was determined from the total current law [7] 

f 

B~ij = ~q%h X (21 + 1) dziJ, (3) 
2 i + 1  i~l  

where Vo is the magnetic permeability of the vacuum; ~ is the relative magnetic permeability 
of the medium; Jzij is the projection of the mean current density of the beam in the ij cell, 
which is determined by the method of current tubes [6]: 

N 
I X ll~) c~ 01~ '' (4) 

dziJ -- y~Nh3 (2 i .~_ 1) k=l 

on the z axis. Here ~i (k) is the length of the trajectory of the k-th particle in the ij cell; 
I is the beam current; ~ is the number of large particles in the beam; and 0x[k) is the angle 
formed with the velocity vector of the k-th particle in the cell (ij). 

The calculations were performed on a BESM-6 computer for a high-current electron beam with 
a radius R = 0.1-0.2 cm, current I = 103-106 A, and electron energy Eo = 1-5 MeV for normal in- 
cidence of the beam on a semiinfinite target consisting of AI, Cu, or Au. The program per- 
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F i g .  l .  S p a t i a l  d i s t r i b u t i o n  o f  e n e r g y  
l o s s e s  i n  a l u m i n u m  f o r  Eo = l MeV, N = 
1 0 0 0 ,  D = 0 . 4  cm:  a )  f o r  !" = 1 0 3  A;  b )  

l06 A; 0(z, r) = (~h3/Po)(dP/dV). 

mitred fixing the energy losses, the currents, and the magnetic fields in each cell of the 
region studied. 

Figure i, constructed with the help of the "Grafor" program~ shows the results of the 
calculation of the spatial distribution of the energy losses in a semiinfinite A1 target. 
The left side of the figure refers to a low-current beam (I = 103A), while the right side re- 
fers to a high-current beam (I = 106 A). The arrows indicate the direction of the incident 
beam; the linear size of a cell corresponds to one-half the grid step ho The figure reflects 
quite clearly the effect of the characteristic magnetic field on the beam: the region of 
energy release for HCEB is compressed toward the surface in such a way that for I = 106 A its 
characteristic size in depth decreases almost by an order of magnitude, while the values of 
the density of the energy loss in this region correspondingly increase by almost an order of 
magnitude. 

Figure 2 shows the results of the calculation of the energy losses in a semiinfinite tar- 
get as a function of the current strength and the diameter of the electron beam. the relative 
released power density p(z) = (h/Po)(dP/dz) (P = IU, U is the accelerating voltage in MV, 
numerically equal to the electron energy in MeV) is plotted along the ordinate axis and the 
depth is plotted along the abscissa axis in fractions of the electron range ro. For each 
sample, curve 1 corresponds to a low-current beam (I = 103 A), when the effect of the char- 
acteristic magnetic field can be neglected. The remaining curves were constructed for HCEB: 
curve 2 corresponds to I = 105 A, R = 0.2 cm; curve 3 corresponds to I = 106 A, R = 0.2 cm; 
and curve 4 corresponds to I = 106 A, R = 0.i cm. All calculations were performed for elec- 
trons with an initial energy Eo = 1 MeV. 

One can see from the figure that the characteristic magnetic field of the HCEB sharply 
changes the graph of the energy release, compressing it toward the surface and significantly 
increasing the density near it. The ratio of the electron range ro to the Larmor radius 
can serve as a characteristic of the effect of the characteristic magnetic field: 

meV? 
r L ~ - - _ _  

eB 
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o ~ a z//7 o ~ ~ z/~ 
Fig. 2. Distribution of energy losses of the beam over the thickness of the alumi- 
num (a)~ copper (b), and gold (c) samples: i) for I = 103 A; 2) I = 105 A, R = 0.2 
cm; 3) I = 106 A, R = 0.2 cm; 4) I = 106A, R = 0.I cm; 5) from [6]. 
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As the order number of the element increases the range ro and together with it the ratio ro/r L 
decreases (for did- amd paramagnets r L is virtually independent of the material) and therefore 
the effect of the characteristic magnetic field on the character of the energy release becomes 
weaker. The broken curve 5 was constructed in [6] for the same values of I, Eo, and R as those 
used for curve 3. The differences in the results are attributable to the fact that for the 
step size s chosen in [6] (AE = 0.0bE) the condition that the effective angle of deflection in 
the magnetic field be limited (b < i rad) is not satisfied (b = 2.5 tad). 

The calculations showed that as the electron energy Eo increases the character of the self- 
consistent distribution of the energy release in range units remains virtually unchanged. This 
is attributable to the fact that in the energy range studied (1-5 MeV) the ratio ro/r L is 
practically constant. 
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GRADIENT OF THE DISCREPANCY IN THE ITERATIVE SOLUTION OF INVERSE HEAT- 

CONDUCTION PROBLEMS. III. CALCULATION OF THE GRADIENT USING A CONJUGATE 

BOUNDARY PROBLEM 

O. M. Allfanov and S. V. Rumyantsev UDC 536.24 

The determination of the gradient in the discrepancy functional, which is required 
for the construction of regularizing gradient algorithms for their solution, is 
considered for various formulations of nonlinear inverse problems of generalized 
heat conduction. 

In [i], the conditions of the conjugate boundary problems were derived for the formula- 
tion of the second and third boundary problems in the case of a quasilinear generalized heat- 
conduction equation, and formulas were obtained for determining the discrepancy gradient in 
terms of the conjugate variable. It was assumed that the time dependence of the temperature 
at one mobile internal point of a one-dimensional spatial region is known as the initial data. 

Below, the conjugate problem is brought to a form in which there is no singular term, 
the conjugate problem is formulated for the case of measurements at the boundary of the re- 
gion, and expressions are obtained for the discrepancy gradient in measurements at several 
spatial points and also for other types of boundary conditions of the problem. 

As in [I], the gradient of the discrepancy functional J = 2"1 S IT (d(z), ~)-- [(z)]zd~ 
O 

with respect to the functions ~ (x), p, (~), P2 (T), and the numercial vectors ~= {~j)~1, 

= {C~}~', K = {Kj}~ =, g = {gj}~4 is considered, for the following conditions 

CT~ = (ETx)x -I- KTx -t- g, 

(x, ~)6Q~={X~(~)<x<X~(~), 0 < ~ < ~ } ;  
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